Topic:Human Object Interaction Detection
What is Human Object Interaction Detection? Human-object interaction (HOI) detection is a task of identifying a set of interactions in an image, which involves the localization of the subject (i.e., humans) and target (i.e., objects) of interaction, and the classification of the interaction labels.
Papers and Code
Jun 07, 2025
Abstract:Visual parsing of images and videos is critical for a wide range of real-world applications. However, progress in this field is constrained by limitations of existing datasets: (1) insufficient annotation granularity, which impedes fine-grained scene understanding and high-level reasoning; (2) limited coverage of domains, particularly a lack of datasets tailored for educational scenarios; and (3) lack of explicit procedural guidance, with minimal logical rules and insufficient representation of structured task process. To address these gaps, we introduce PhysLab, the first video dataset that captures students conducting complex physics experiments. The dataset includes four representative experiments that feature diverse scientific instruments and rich human-object interaction (HOI) patterns. PhysLab comprises 620 long-form videos and provides multilevel annotations that support a variety of vision tasks, including action recognition, object detection, HOI analysis, etc. We establish strong baselines and perform extensive evaluations to highlight key challenges in the parsing of procedural educational videos. We expect PhysLab to serve as a valuable resource for advancing fine-grained visual parsing, facilitating intelligent classroom systems, and fostering closer integration between computer vision and educational technologies. The dataset and the evaluation toolkit are publicly available at https://github.com/ZMH-SDUST/PhysLab.
Via

Jun 06, 2025
Abstract:Manipulation has long been a challenging task for robots, while humans can effortlessly perform complex interactions with objects, such as hanging a cup on the mug rack. A key reason is the lack of a large and uniform dataset for teaching robots manipulation skills. Current robot datasets often record robot action in different action spaces within a simple scene. This hinders the robot to learn a unified and robust action representation for different robots within diverse scenes. Observing how humans understand a manipulation task, we find that understanding how the objects should move in the 3D space is a critical clue for guiding actions. This clue is embodiment-agnostic and suitable for both humans and different robots. Motivated by this, we aim to learn a 3D flow world model from both human and robot manipulation data. This model predicts the future movement of the interacting objects in 3D space, guiding action planning for manipulation. Specifically, we synthesize a large-scale 3D optical flow dataset, named ManiFlow-110k, through a moving object auto-detect pipeline. A video diffusion-based world model then learns manipulation physics from these data, generating 3D optical flow trajectories conditioned on language instructions. With the generated 3D object optical flow, we propose a flow-guided rendering mechanism, which renders the predicted final state and leverages GPT-4o to assess whether the predicted flow aligns with the task description. This equips the robot with a closed-loop planning ability. Finally, we consider the predicted 3D optical flow as constraints for an optimization policy to determine a chunk of robot actions for manipulation. Extensive experiments demonstrate strong generalization across diverse robotic manipulation tasks and reliable cross-embodiment adaptation without hardware-specific training.
Via

May 28, 2025
Abstract:Livestreaming often involves interactions between streamers and objects, which is critical for understanding and regulating web content. While human-object interaction (HOI) detection has made some progress in general-purpose video downstream tasks, when applied to recognize the interaction behaviors between a streamer and different objects in livestreaming, it tends to focuses too much on the objects and neglects their interactions with the streamer, which leads to object bias. To solve this issue, we propose a prototype embedding optimization for human-object interaction detection (PeO-HOI). First, the livestreaming is preprocessed using object detection and tracking techniques to extract features of the human-object (HO) pairs. Then, prototype embedding optimization is adopted to mitigate the effect of object bias on HOI. Finally, after modelling the spatio-temporal context between HO pairs, the HOI detection results are obtained by the prediction head. The experimental results show that the detection accuracy of the proposed PeO-HOI method has detection accuracies of 37.19%@full, 51.42%@non-rare, 26.20%@rare on the publicly available dataset VidHOI, 45.13%@full, 62.78%@non-rare and 30.37%@rare on the self-built dataset BJUT-HOI, which effectively improves the HOI detection performance in livestreaming.
Via

May 26, 2025
Abstract:Recent methods for zero-shot Human-Object Interaction (HOI) detection typically leverage the generalization ability of large Vision-Language Model (VLM), i.e., CLIP, on unseen categories, showing impressive results on various zero-shot settings. However, existing methods struggle to adapt CLIP representations for human-object pairs, as CLIP tends to overlook fine-grained information necessary for distinguishing interactions. To address this issue, we devise, LAIN, a novel zero-shot HOI detection framework enhancing the locality and interaction awareness of CLIP representations. The locality awareness, which involves capturing fine-grained details and the spatial structure of individual objects, is achieved by aggregating the information and spatial priors of adjacent neighborhood patches. The interaction awareness, which involves identifying whether and how a human is interacting with an object, is achieved by capturing the interaction pattern between the human and the object. By infusing locality and interaction awareness into CLIP representation, LAIN captures detailed information about the human-object pairs. Our extensive experiments on existing benchmarks show that LAIN outperforms previous methods on various zero-shot settings, demonstrating the importance of locality and interaction awareness for effective zero-shot HOI detection.
* Accepted to CVPR2025; Code is available at:
https://github.com/OreoChocolate/LAIN
Via

May 27, 2025
Abstract:Object concepts play a foundational role in human visual cognition, enabling perception, memory, and interaction in the physical world. Inspired by findings in developmental neuroscience - where infants are shown to acquire object understanding through observation of motion - we propose a biologically inspired framework for learning object-centric visual representations in an unsupervised manner. Our key insight is that motion boundary serves as a strong signal for object-level grouping, which can be used to derive pseudo instance supervision from raw videos. Concretely, we generate motion-based instance masks using off-the-shelf optical flow and clustering algorithms, and use them to train visual encoders via contrastive learning. Our framework is fully label-free and does not rely on camera calibration, making it scalable to large-scale unstructured video data. We evaluate our approach on three downstream tasks spanning both low-level (monocular depth estimation) and high-level (3D object detection and occupancy prediction) vision. Our models outperform previous supervised and self-supervised baselines and demonstrate strong generalization to unseen scenes. These results suggest that motion-induced object representations offer a compelling alternative to existing vision foundation models, capturing a crucial but overlooked level of abstraction: the visual instance. The corresponding code will be released upon paper acceptance.
Via

May 27, 2025
Abstract:Active vision, also known as active perception, refers to the process of actively selecting where and how to look in order to gather task-relevant information. It is a critical component of efficient perception and decision-making in humans and advanced embodied agents. Recently, the use of Multimodal Large Language Models (MLLMs) as central planning and decision-making modules in robotic systems has gained extensive attention. However, despite the importance of active perception in embodied intelligence, there is little to no exploration of how MLLMs can be equipped with or learn active perception capabilities. In this paper, we first provide a systematic definition of MLLM-based active perception tasks. We point out that the recently proposed GPT-o3 model's zoom-in search strategy can be regarded as a special case of active perception; however, it still suffers from low search efficiency and inaccurate region selection. To address these issues, we propose ACTIVE-O3, a purely reinforcement learning based training framework built on top of GRPO, designed to equip MLLMs with active perception capabilities. We further establish a comprehensive benchmark suite to evaluate ACTIVE-O3 across both general open-world tasks, such as small-object and dense object grounding, and domain-specific scenarios, including small object detection in remote sensing and autonomous driving, as well as fine-grained interactive segmentation. In addition, ACTIVE-O3 also demonstrates strong zero-shot reasoning abilities on the V* Benchmark, without relying on any explicit reasoning data. We hope that our work can provide a simple codebase and evaluation protocol to facilitate future research on active perception in MLLMs.
Via

May 25, 2025
Abstract:Current perception models have achieved remarkable success by leveraging large-scale labeled datasets, but still face challenges in open-world environments with novel objects. To address this limitation, researchers introduce open-set perception models to detect or segment arbitrary test-time user-input categories. However, open-set models rely on human involvement to provide predefined object categories as input during inference. More recently, researchers have framed a more realistic and challenging task known as open-ended perception that aims to discover unseen objects without requiring any category-level input from humans at inference time. Nevertheless, open-ended models suffer from low performance compared to open-set models. In this paper, we present VL-SAM-V2, an open-world object detection framework that is capable of discovering unseen objects while achieving favorable performance. To achieve this, we combine queries from open-set and open-ended models and propose a general and specific query fusion module to allow different queries to interact. By adjusting queries from open-set models, we enable VL-SAM-V2 to be evaluated in the open-set or open-ended mode. In addition, to learn more diverse queries, we introduce ranked learnable queries to match queries with proposals from open-ended models by sorting. Moreover, we design a denoising point training strategy to facilitate the training process. Experimental results on LVIS show that our method surpasses the previous open-set and open-ended methods, especially on rare objects.
Via

May 22, 2025
Abstract:The Earth's surface is subject to complex and dynamic processes, ranging from large-scale phenomena such as tectonic plate movements to localized changes associated with ecosystems, agriculture, or human activity. Satellite images enable global monitoring of these processes with extensive spatial and temporal coverage, offering advantages over in-situ methods. In particular, resulting satellite image time series (SITS) datasets contain valuable information. To handle their large volume and complexity, some recent works focus on the use of graph-based techniques that abandon the regular Euclidean structure of satellite data to work at an object level. Besides, graphs enable modelling spatial and temporal interactions between identified objects, which are crucial for pattern detection, classification and regression tasks. This paper is an effort to examine the integration of graph-based methods in spatio-temporal remote-sensing analysis. In particular, it aims to present a versatile graph-based pipeline to tackle SITS analysis. It focuses on the construction of spatio-temporal graphs from SITS and their application to downstream tasks. The paper includes a comprehensive review and two case studies, which highlight the potential of graph-based approaches for land cover mapping and water resource forecasting. It also discusses numerous perspectives to resolve current limitations and encourage future developments.
* This work has been submitted to the IEEE for possible publication
Via

May 20, 2025
Abstract:Although the integration of artificial intelligence (AI) into everyday tasks improves efficiency and objectivity, it also risks transmitting bias to human decision-making. In this study, we conducted a controlled experiment that simulated hiring decisions to examine how biased AI recommendations - augmented with or without counterfactual explanations - influence human judgment over time. Participants, acting as hiring managers, completed 60 decision trials divided into a baseline phase without AI, followed by a phase with biased (X)AI recommendations (favoring either male or female candidates), and a final post-interaction phase without AI. Our results indicate that the participants followed the AI recommendations 70% of the time when the qualifications of the given candidates were comparable. Yet, only a fraction of participants detected the gender bias (8 out of 294). Crucially, exposure to biased AI altered participants' inherent preferences: in the post-interaction phase, participants' independent decisions aligned with the bias when no counterfactual explanations were provided before, but reversed the bias when explanations were given. Reported trust did not differ significantly across conditions. Confidence varied throughout the study phases after exposure to male-biased AI, indicating nuanced effects of AI bias on decision certainty. Our findings point to the importance of calibrating XAI to avoid unintended behavioral shifts in order to safeguard equitable decision-making and prevent the adoption of algorithmic bias.
* Accepted for XAI2025
Via

May 08, 2025
Abstract:Human-robot interaction for assistive technologies relies on the prediction of affordances, which are the potential actions a robot can perform on objects. Predicting object affordances from visual perception is formulated differently for tasks such as grasping detection, affordance classification, affordance segmentation, and hand-object interaction synthesis. In this work, we highlight the reproducibility issue in these redefinitions, making comparative benchmarks unfair and unreliable. To address this problem, we propose a unified formulation for visual affordance prediction, provide a comprehensive and systematic review of previous works highlighting strengths and limitations of methods and datasets, and analyse what challenges reproducibility. To favour transparency, we introduce the Affordance Sheet, a document to detail the proposed solution, the datasets, and the validation. As the physical properties of an object influence the interaction with the robot, we present a generic framework that links visual affordance prediction to the physical world. Using the weight of an object as an example for this framework, we discuss how estimating object mass can affect the affordance prediction. Our approach bridges the gap between affordance perception and robot actuation, and accounts for the complete information about objects of interest and how the robot interacts with them to accomplish its task.
* 24 pages, 12 figures, 10 tables. Project website at
https://apicis.github.io/aff-survey/
Via
